Abstract
When estimating the treatment effect in an observational study, we use a semiparametric locally efficient dimension reduction approach to assess both the treatment assignment mechanism and the average responses in both treated and non-treated groups. We then integrate all results through imputation, inverse probability weighting and double robust augmentation estimators. Double robust estimators are locally efficient while imputation estimators are super-efficient when the response models are correct. To take advantage of both procedures, we introduce a shrinkage estimator to automatically combine the two, which retains the double robustness property while improving on the variance when the response model is correct. We demonstrate the performance of these estimators through simulated experiments and a real dataset concerning the effect of maternal smoking on baby birth weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.