Abstract

We prove, via an elementary variational method, 1d and 2d localization within the band gaps of a periodic Schrodinger operator for any mostly negative or mostly positive defect potential, V, whose depth is not too great compared to the size of the gap. In a similar way, we also prove sufficient conditions for 1d and 2d localization below the ground state of such an operator. Furthermore, we extend our results to 1d and 2d localization in d dimensions; for example, a linear or planar defect in a 3d crystal. For the case of D-fold degenerate band edges, we also give sufficient conditions for localization of up to D states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.