Abstract

Let $f$ be an entire function of order $\rho\in (0,+\infty)$ with zeros on a finite system of rays $\{z: \arg z=\psi_{j}\}$, $j\in\{1,\ldots,m\}$, $0\le\psi_1<\psi_2<\ldots<\psi_m<2\pi$ and $h(\varphi)$ be its indicator. In 2011, the author of the article has been proved that if $f$ is of improved regular growth (an entire function $f$ is called a function of improved regular growth if for some $\rho\in (0,+\infty)$ and $\rho_1\in (0,\rho)$, and a $2\pi$-periodic $\rho$-trigonometrically convex function $h(\varphi)\not\equiv -\infty$ there exists a set $U\subset\mathbb C$ contained in the union of disks with finite sum of radii and such that $\log |{f(z)}|=|z|^\rho h(\varphi)+o(|z|^{\rho_1})$, $U\not\ni z=re^{i\varphi}\to\infty$), then for some $\rho_3\in (0,\rho)$ the relation \begin{equation*} \int_1^r {\frac{\log |{f(te^{i\varphi})}|}{t}}\, dt=\frac{r^\rho}{\rho}h(\varphi)+o(r^{\rho_3}),\quad r\to +\infty, \end{equation*} holds uniformly in $\varphi\in [0,2\pi]$. In the present paper, using the Fourier coefficients method, we establish the converse statement, that is, if for some $\rho_3\in (0,\rho)$ the last asymptotic relation holds uniformly in $\varphi\in [0,2\pi]$, then $f$ is a function of improved regular growth. It complements similar results on functions of completely regular growth due to B. Levin, A. Grishin, A. Kondratyuk, Ya. Vasyl'kiv and Yu. Lapenko.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.