Abstract

We present three natural combinatorial properties for class forcing notions, which imply the forcing theorem to hold. We then show that all known sufficent conditions for the forcing theorem (except for the forcing theorem itself), including the three properties presented in this paper, imply yet another regularity property for class forcing notions, namely that proper classes of the ground model cannot become sets in a generic extension, that is they do not have set-sized names in the ground model. We then show that over certain models of G\odel-Bernays set theory without the power set axiom, there is a notion of class forcing which turns a proper class into a set, however does not satisfy the forcing theorem. Moreover, we show that the property of not turning proper classes into sets can be used to characterize pretameness over such models of G\odel-Bernays set theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call