Abstract

We consider an optimal control problem for a general mathematical model of drug treatment with a single agent. The control represents the concentration of the agent and its effect (pharmacodynamics) is modelled by a Hill function (i.e., Michaelis-Menten type kinetics). The aim is to minimize a cost functional consisting of a weighted average related to the state of the system (both at the end and during a fixed therapy horizon) and to the total amount of drugs given. The latter is an indirect measure for the side effects of treatment. It is shown that optimal controls are continuous functions of time that change between full or no dose segments with connecting pieces that take values in the interior of the control set. Sufficient conditions for the strong local optimality of an extremal controlled trajectory in terms of the existence of a solution to a piecewise defined Riccati differential equation are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.