Abstract

New sufficient conditions for function space controllability and hence feedback stabilizability of linear retarded systems are presented. These conditions were obtained by treating the retarded systems as a special case of an abstract equation in Hilbert space <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R^{n}\times L_{2}([- h, 0], R^{n})</tex> (denoted as <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M_{2</tex> }). For systems of type <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\cdot{x}(t)=A_{0}x(t)+A_{1}x(t-h)+Bu(t)</tex> , it is shown that most of controllability properties are described by a certain polynomial matrix <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P(\lambda)</tex> , whose columns can be generated by an algorithm comparing <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A_{0}^{i}B,A_{0}^{i} B</tex> and mixed powers of A <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> and A <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> multiplied by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B.</tex> It is shown that the M <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -approximate controllability of the system is guaranteed by certain triangularity properties of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">P(\lambda)</tex> . By using the Luenberger canonical form, it is shown that the system is M <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -approximately controllable if the pair <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(A_{1},B)</tex> is controllable and if each of the spaces spanned by columns of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[B,A_{1}B,... ,A_{1}^{j}B], j=O...n-1</tex> , is invariant under transformation A <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</inf> . Other conditions of this type are also given. Since the M <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -approximate controllability implies controllability of all the eigenmodes of the system, the feedback stabilizability with an arbitrary exponential decay rate is guaranteed under hypotheses leading to M <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -approximate controllability. Some examples are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call