Abstract
Cluster Editing is the problem of turning a graph into a cluster graph, that is, a disjoint union of cliques, by a minimum number of edge edits. Cluster Deletion is similarly defined, with edge deletions only. We propose a local notion of edit-optimality: Informally, we say that a crown (a certain type of labeled graph) is edit-optimal if it yields a cluster in some optimal solution to Cluster Editing, in every graph containing this crown as a subgraph. Then we give sufficient conditions for edit-optimality, e.g., in terms of vertex degrees. A condition for Cluster Deletion applies a theorem of Landau (1953) [7] on degree sequences of tournaments. The conditions are particularly suited for planted models of clusterings, and for networks that only partially exhibit a clear cluster structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.