Abstract
AbstractA (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.