Abstract

This paper presents the stabilization problem of a linear time invariant fractional order (LTI-FO) switched system with order 1 < q < 2 by a single Lyapunov function whose derivative is negative and bounded by a quadratic function within the activation regions of each subsystem. The switching law is extracted based on the variable structure control with a sliding sector. First, a sufficient condition for the stability of an LTI-FO switched system with order 1 < q < 2 based on the convex analysis and linear matrix inequality (LMI) is presented and proved. Then a single Lyapunov function, whose derivative is negative, is constructed based on the extremum seeking method. A sliding sector is designed for each subsystem of the LTI-FO switched system so that each state in the state space is inside at least one sliding sector with its corresponding subsystem, where the Lyapunov function found by the extremum seeking control is decreasing. Finally, a switching control law is designed to switch the LTI-FO switched system among subsystems to ensure the decrease of the Lyapunov function in the state space. Simulation results are given to show the effectiveness of the proposed VS controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.