Abstract

We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems and permutationally invariant systems. The condition relates a nonzero macroscopic cumulant correlation in the steady state to the presence of gapless modes in the Lindbladian. In phases arising from competing coherent and dissipative Lindbladian terms, we argue that such gapless modes, concomitant with angular momentum conservation, can lead to persistent dynamics in the spin observables with the possible formation of dissipative time crystals. We study different models within this perspective, from Lindbladians with Hermitian jump operators, to non-Hermitian ones composed by collective spins and Floquet spin-boson systems. We also provide a simple analytical proof for the exactness of the mean-field semiclassical approach in such systems based on a cumulant expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.