Abstract

Quantum key distribution can be enhanced and extended if nonclassical single-photon states of light are used. We study a connection between the security of quantum key distribution and quantum non-Gaussianity of light arriving at the receiver's detection system after the propagation through a noisy quantum channel, being under full control of an eavesdropper performing general collective attacks. We show that while quantum nonclassicality exhibited by the light arriving at the receiver's station is a necessary indication of the security of the discrete-variable protocols, quantum non-Gaussianity can be a sufficient indication of their security. Therefore, checking for non-Gaussianity of this light by performing standard autocorrelation function measurement can be used for prior verification of the usability of prepare-and-measure schemes. It can play similar role to the prior verification of the quantum correlations sufficient to violate Bell inequalities for entanglement-based protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.