Abstract

Purpose:To perform dose profile and output factor measurements for the Exradin W1 plastic scintillation detector (PSD) for the Gamma Knife Perfexion (GKP) collimators in a Lucy phantom and to compare these values to an Exradin A16 ion chamber, EBT3 radiochromic film and treatment planning system (TPS) data.Methods:We used the Exradin W1 PSD which has a small volume, near‐water equivalent sensitive element. It has also been shown to be energy independent. This new detector is manufactured and distributed by Standard Imaging, Inc. Measurements were performed for all three collimators (4 mm, 8 mm and 16 mm) for the GKP. The Lucy phantom with the PSD inserted was moved in small steps to acquire profiles in all three directions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. Relative output factors were measured using the three detectors while profiles acquired with the PSD were compared to the ones measured with EBT3 radiochromic film.Results:Measured output factors relative to the largest collimator are as followsCollimator PS EBT3 A1616mm 1.000 1.000 1.0008mm 0.892 0.881 0.8834mm 0.795 0.793 0.727 The nominal (vendor) OFs for GKP are 1.000, 0.900, and 0.814, for collimators 16 mm, 8 mm and 4 mm, respectively. There is excellent agreement between all profiles measured with the PSD and EBT3 as well as with the TPS data provided by the vendor.Conclusion:Output factors measured with the W1 were consistent with the ones measured with EBT3 and A16 ion chamber. Measured profiles are in excellent agreement. The W1 detector seems well suited for beam QA for Gamma Knife due to its dosimetric characteristics.Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824‐02A1) with Standard Imaging, Title: “Water‐Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call