Abstract

Purpose:All present dosimetry protocols recommend well‐guarded parallel‐plate ion chambers for electron dosimetry. For the guard‐less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read‐out of a Markus and a NACP chamber, which was assumed to be “perturbation‐free”. Aim of the present study is a Monte Carlo based reiteration of this experiment.Methods:Detailed models of four parallel‐plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E0=6‐21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth.Results:The calculated dose ratio DNACP/DMarkus, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths.Conclusion:The simulations principally confirm the energy dependence of the dose ratio DNACP/DMarkus as published by van der Plaetsen. But, as shown by our simulations of the ratio DW/DMarkus, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well‐guarded chambers the guard‐less Markus chamber reveals the smallest overall perturbation correction and also the smallest energy dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.