Abstract

Purpose:The Monaco treatment planning system (TPS) uses a Monte‐Carlo algorithm based dose computation engine to model the photon beams of a linear accelerator. The aim is to perform verification of Monaco TPS beam modeling of a Elekta VersaHD linac with 6MV, 6MV FFF, 10 MV, 10MV FFF, 18MV photon beams and 160 multileaf collimators (MLC) with a projected width of 5‐mm at the isocenter.Methods:A series of dosimetric tests were performed to validate Monaco calculated beams including point dose measurement in water with and without heterogeneity and 2‐dimensional dose distributions on a Delta4 bi‐planar diode dosimeter array (Scandidos, Uppsala, Sweden). 3D conformal beams of different field sizes, source‐to‐surface distances, wedges, and gantry angles were delivered onto a phantom consisting of several plastic water and Styrofoam slabs. Point dose measurements were verified with a PTW 31013 Semiflex 0.3 cc ionization chamber (PTW, Freiburg, Germany). In addition, 8 step and shoot intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) beams included in the Monaco TPS commissioning suite were verified against measurements on Delta4 to test and fine tune parameters in the beam model. IMRT verification was computed using gamma analysis with dose difference and distance‐to‐agreement criteria of 3%/3mm with a dose threshold of 10%.Results:Point dose measurements agreed within 2% in the homogeneous phantom and within 3% in the heterogeneous phantom for all photon energies. IMRT beams yielded a passing percentage of 99.1±1.1% in the gamma analysis which is well above the institutional passing threshold of 90%.Conclusion:Monaco TPS commissioning was successfully performed for all the photon energies on the Elekta VersaHD linac prior to clinical usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.