Abstract
It has been shown already that when the harmonic trap is opened (or closed) as a function of time while keeping the adiabatic parameter $\ensuremath{\mu}=[d\ensuremath{\omega}(t)/dt]/{\ensuremath{\omega}}^{2}(t)$ fixed, a sharp transition from an oscillatory to a monotonic exponential dynamics occurs at $\ensuremath{\mu}=2$ [Uzdin, Dalla Torre, Kosloff, and Moiseyev, Phys. Rev. A 88, 022505 (2013)]. Here we show that by using time-dependent linear coordinate transformation the time-dependent Schr\odinger equation with Hermitian time-dependent Hamiltonian is transformed into a time-dependent Schr\odinger equation with a time-independent harmonic oscillator with the dimensionless frequency of $\sqrt{1\ensuremath{-}{(\ensuremath{\mu}/2)}^{2}}$. At $\ensuremath{\mu}=2$ a transition to a non-Hermitian Hamiltonian is obtained as the potential well is transformed to a parabolic potential barrier. While in a harmonic trap noninteracting particles have classical periodic motions, they are pushed apart exponentially in time as the potential well is suddenly transformed into a parabolic potential barrier in the new variable representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.