Abstract
The case history of a sudden and unexpected failure in a pavement designed for 82Mg axle loads at Port Botany in Sydney, Australia has been prepared using data derived from investigation of the failure. Failure of the pavement, comprised of an asphaltic concrete surface, unbound granular fine crushed rock base, crushed sandstone subbase, and sandy subgrade, and designed using the rational method—CIRCLY, occurred within days of being put into service. The failure resulted from a 20–30% increase in base course saturation levels following compaction that led to partial liquefaction under repeated heavy loading. There was a general failure throughout the storage area where trafficking was most intense and the pavement remained intact in lightly trafficked areas. The intact areas recovered over time without intervention through a moisture equilibration process as evidenced by an increase in measured pavement stiffness and loss of moisture within the pavement profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.