Abstract

Purpose:To investigate whether a high detection quantum efficiency (DQE) MV detector makes combined kV/MV CBCT clinically practical.Methods:Combined kV/MV CBCT was studied for scan time reduction (STR) and metal artifact reduction (MAR). 6MV CBCT data (dose rate = 0.017 MU/degree) were collected using 1) a novel focused pixelated cadmium tungstate (CWO) scintillator (15mm thickness, DQE(0) = 22%, 0.784mm pixel pitch) coupled to a flat panel imager, and 2) a commercial portal imager with a 133mg/cm2 gadolinium oxysulfide (GOS) screen (DQE(0) = 1.2%). The 100kVp data were acquired using a commercial imager employing a columnar cesium iodide scintillator (DQE(0) = 70%) with a dose rate of 0.0016 cGy/degree. For STR, MV and kV projections spanning 105° were combined to constitute a complete CBCT scan. Total dose was ∼2cGy and acquisition time was 18s. For MAR, only the metalcorrupted pixels in the kV projections were replaced with MV data resulting in a total dose of less than 1cGy for a 360° scan. Image quality was assessed using an 18‐cm diameter electron density phantom with nine tissue inserts, some of which were replaced with steel rods for MAR studies.Results:The CWO contrast‐to‐noise ratio (CNR) was ∼4.0x higher than the GOS CNR and was ∼4.8x lower than the kV CNR when normalized for dose. When CWO MV data were combined with kV data for STR, all contrast inserts were visible, but only two were detectable in the composite kV/GOS image. Metal artifacts were greatly reduced using the kV/MV MAR technique with all contrast inserts clearly visible in the composite kV/CWO image but only two inserts visible in the composite kV/GOS image.Conclusion:We have demonstrated that a high DQE MV detector significantly improves kV/MV CBCT image quality thus enabling scan time reduction and metal artifact reduction without a severe dose penalty.AW and JS‐L are employees of Varian, RF is an employee of Siemens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.