Abstract

To describe a suction-based grasping tool for the surgical removal of irregular-shaped and nonferromagnetic intraocular foreign bodies. A surgical tool with suction capabilities, consisting of a stainless steel shaft with a plastic handle and a customizable and interchangeable suction tip, was designed in order to better engage and manipulate irregular-shaped in-traocular foreign bodies of various sizes and physical properties. The maximal suction force and surgical capabilities were assessed in the laboratory and on a cadaveric eye vitrectomy model. The suction force of the water-tight seal between the intraocular foreign body and the suction tip was estimated to be approximately 40 MN. During an open-sky vitrectomy in a porcine model, the device was successful in engaging and firmly securing foreign bodies of different sizes and shapes. The suction-based grasping tool enables removal of irregular-shaped and nonferromagnetic foreign bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call