Abstract

Streptococcus gordonii exhibits a phase variation involving expression of high (Spp+) or low (Spp-) glucosyltransferase activity. The related bacterial accumulation on hydroxyapatite (HA) and saliva-coated HA surfaces was examined and found to be significant. Spp+ cells growing anaerobically in a defined medium utilize about 30% of the glucose available from sucrose to make insoluble glucans. These glucans formed cohesive masses on HA beads, which contained 80 to 90% of the total bacteria. The bacterial polymer mass had a volume of about 40 microns3 and contained more than 5 x 10(10) viable cells per cm3. In the absence of sucrose, the beads were saturated by 1 x 10(8) to 2 x 10(8) Spp+ cells. Spp- bacteria, which make 30-fold less glucan than do Spp+ bacteria, did not accumulate on surfaces in numbers significantly above the saturation level of 1 x 10(8) to 2 x 10(8) cells in the presence or absence of sucrose. Insoluble glucan synthesized by Spp+ cells from sucrose also enabled these bacteria to accumulate on saliva-coated HA seven times more effectively than the Spp- cells and 10 times more effectively than the Spp+ cells grown in medium without sucrose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.