Abstract

Sucrose accumulation has been observed in some methylotrophic bacteria utilizing methane, methanol, or methylated amines as a carbon and energy source. In this work, we have investigated the biochemical pathways for sucrose metabolism in the model halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. The genes encoding sucrose-phosphate synthase (Sps), sucrose-phosphate phosphatase (Spp), fructokinase (FruK), and amylosucrase (Ams) were co-transcribed and displayed similar expression levels. Functional Spp and Ams were purified after heterologous expression in Escherichia coli. Recombinant Spp exhibited high affinity for sucrose-6-phosphate and stayed active at very high levels of sucrose (K i =1.0±0.6M). The recombinant amylosucrase obeyed the classical Michaelis-Menten kinetics in the reactions of sucrose hydrolysis and transglycosylation. As a result, the complete metabolic network for sucrose biosynthesis and re-utilization in the non-phototrophic organism was reconstructed for the first time. Comparative genomic studies revealed analogous gene clusters in various Proteobacteria, thus indicating that the ability to produce and metabolize sucrose is widespread among prokaryotes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.