Abstract

The flow of carbon into sucrose and starch was investigated in fully expanded primary leaves of spinach using the long to short day transition and partial defoliation as tools to manipulate sucrose/starch synthesis. Transfer from 12 hour to 7 hour photosynthetic periods resulted in a 4-fold increase in the initial rate of starch synthesis, a 50% increase in the initial rate of sucrose synthesis, a 30% increase in leaf sucrose, and a 40% decrease in fructose, 2,6-biphosphate. In addition, sucrose synthesis rates in cells isolated from shortened daylength plants are 80% higher than in cells isolated from control plants. These results show that, in spinach, an increase in the rates of both sucrose and starch synthesis can occur under short day conditions. In contrast, when short day plants are partially defoliated, starch levels remain high, fructose 2,6-biphosphate levels remain low, but the level of leaf sucrose drops by 50%. Thus, when demand exceeds supply, starch synthesis has priority over filling of leaf sucrose pools in the short day plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call