Abstract

Sweet sorghum (Sorghum bicolor L. Moench) stems of different cultivars (NK 405. Keller and Tracy) reveal a different pattern of sucrose accumulation with respect to in‐ternodal sugar content and distribution. The onset of sucrose storage is not necessarily associated with the reproductive stage of the plant, as was hitherto assumed, but obviously occurs after cessation of internodai elongation as was postulated for the sugarcane stem. For at least two of the three cultivars, ripening is an internode to internode process beginning at the lowermost culm parts. Intensive growth of the internodes, combined with a high hexose content in stern parenchyma, shows a strong positive correlation (r |Mg 0.94) to the activity of sucrose synthase (SuSy; EC 2.4.13), but not to invertase (EC 3.2.1.26) which is not present as soluble (neutral and acid) or cell wall‐bound, salt‐extractable enzyme in the three culsivars investigated. Sucrose synthase measured in sucrose cleavage and synthesis direction reveals divergent activity rates and sensitivity towards exogenously applied Mg2+ ions and pH. SuSy activity is connected to the increase of internodai sucrose content in so far as (1) its decline is a prerequisite for the onset of sucrose accumulation and (2) it remains at a constant low level during sucrose storage. Sucrose phosphate synthase (SPS; EC 2.4.1.14) activity in the sorghum stem is low compared to SuSy and uniformly distributed over all inter‐nodes. Only source leaves of sorghum show a considerable SPS activity, but neither stem nor leaf SPS reveal a positive correlation to the increase of internodai sucrose content. Sucrose phosphate phosphatase (SPP; EC 3.1.3.24) amounts lo only 24–30% of the respective SPS activity but follows the same distribution pattern. None of the enzymes under study proves to be responsible for the extent of sucrose storage in the stem, so other phenomena such as transport processes within the stern tissue require further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call