Abstract

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call