Abstract

A series of aryl-functionalized alkyl dihydrazones was prepared by condensation of succinyl or adipoyl dihydrazide and selected ortho-hydroxybenzaldehydes (2-hydroxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, 2,3-dihydroxybenzaldehyde, and 2,4-dihydroxybenzaldehyde) in solution. The obtained products were structurally characterized in the solid state by single-crystal X-ray diffraction (SC-XRD), thermal analysis (TGA-DSC), and Fourier transform infrared (FTIR) spectroscopy and in DMSO-d6 solution by nuclear magnetic resonance (NMR) techniques. Combined FTIR and crystal structure data point to a N–NH–C=O tautomeric form of the hydrazone parts as well as the enol-imino tautomeric form of the aldehyde residues and a robust trans-syn conformation for the structurally investigated ones. While the molecules retain the same tautomeric form in the DMSO-d6 solution, they adopt several conformations, due to rotations around Car–C, C–N, and N–N bonds. The compounds show exceptional thermal stability, with a complex degradation pattern. Slight differences in thermal behavior correlate to alkyl chain length and aryl substituents. The in vitro cytotoxic activity of prepared dihydrazones was evaluated on THP-1 and HepG2 cell lines, while their antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Moraxella catarrhalis bacteria. All compounds proved to be non-cytotoxic, and some exhibited moderate antibacterial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.