Abstract
<p>This thesis analyzes the descriptional power of finite automata, regular expressions, pushdown automata, and certain generalized models of macro grammars. For finite automata and pushdown automata the emphasis is on ambiguity. It is shown that ambiguous nondeterminism allows more succinct definitions than unambiguous nondeterminism which in turn allows more succinct definitions than determinism. The succinctness gain is nonrecursive for pda's and nonpolynomial for finite automata.</p><p>The succinctness of regular expressions and macro grammars is measured in terms of complexity theory. It is shown that the inequivalence problem for Ol macro grammars generating finite languages is hard for nondeterministic double exponential time, and that the ''nonemptiness of complement'' problem for unambiguous regular expressions is in NP. This implies that unambiguous regular expressions are ''easier'' than general regular expressions (unless NP is equal to PSPACE).</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.