Abstract

Boolean automata are a generalization of finite automata in the sense that the ‘next state’, i.e. the result of the transition function given a state and a letter, is not just a single state (deterministic automata) or a union of states (nondeterministic automata) but a boolean function of states. Boolean automata accept precisely regular languages; furthermore they correspond in a natural way to certain language equations as well as to sequential networks. We investigate the succinctness of representing regular languages by boolean automata. In particular, we show that for every deterministic automaton A with m states there exists a boolean automaton with [log 2 m] states which accepts the reverse of the language accepted by A ( m≥1). We also show that for every n≥1 there exists a boolean automation with n states such that the smallest deterministic automaton accepting the same language has 2 (2n) states; moreover this holds for an alphabet with only two letters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.