Abstract

We consider the problem of designing succinct data structures for interval graphs with n vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time. Towards showing succinctness, we first show that at least \(n\log _2{n} - 2n\log _2\log _2 n - O(n)\) bits. are necessary to represent any unlabeled interval graph G with n vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size \(n\log _2{n} +O(n)\) bits while supporting not only the above queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on interval graphs efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit, k-improper interval graphs, and circular-arc graphs, and design succinct data structures for these graph classes as well along with supporting queries on them efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.