Abstract
An overview of the present knowledge about succinate:quinone oxidoreductase in Paracoccus denitrificans and Bacillus subtilis is presented. P. denitrificans contains a monoheme succinate:ubiquinone oxidoreductase that is similar to that of mammalian mitochondria with respect to composition and sensitivity to carboxin. Results obtained with carboxin-resistant P. denitrificans mutants provide information about quinone-binding sites on the enzyme and the molecular basis for the resistance. B. subtilis contains a diheme succinate:menaquinone oxidoreductase whose activity is dependent on the electrochemical gradient across the cytoplasmic membrane. Data from studies of mutant variants of the B. subtilis enzyme combined with available crystal structures of a similar enzyme, Wolinella succinogenes fumarate reductase, substantiate a proposed explanation for the mechanism of coupling between quinone reductase activity and transmembrane potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.