Abstract

During tissue ischemia succinate accumulates. Herein, literature spanning the past nine decades is reviewed leaning towards the far greater role of Krebs cycle's canonical activity yielding succinate through α-ketoglutarate -> succinyl-CoA -> succinate even in hypoxia, as opposed to reversal of succinate dehydrogenase. Furthermore, the concepts of i) a diode-like property of succinate dehydrogenase rendering it difficult to reverse, and ii) the absence of mammalian mitochondrial quinones exhibiting redox potentials in the [-60, -80] mV range needed for fumarate reduction, are discussed. Finally, it is emphasized that a "fumarate reductase" enzyme entity reducing fumarate to succinate found in some bacteria and lower eukaryotes remains to be discovered in mammalian mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.