Abstract

BackgroundOvarian carcinoma is one of the most common gynecological cancers with high mortality rates. Numerous evidences demonstrate that cancer cells undergo metabolic abnormality during tumorigenesis in tumor microenvironment and further facilitate tumor progression. Succinate dehydrogenase (SDH or Complex II) is one of the important enzymes in the tricarboxylic acid (TCA) cycle. Succinate dehydrogenase subunit B (SDHB) gene, which encodes one of the four subunits of SDH, has been recognized as a tumor suppressor. However the role of SDHB in ovarian cancer is still unclear.MethodsUsing the SDHB specific siRNA and overexpression plasmid, the expression of SDHB was silenced and conversely induced in ovarian cancer cell lines SKOV3 and A2780, respectively. The possible role of SDHB in ovarian cancer was investigated in vitro, using proliferation, migration and invasion assays. To explore the mechanism, proliferation and migration related proteins such as Bcl-2, cleaved caspase 3, p-ERK, MMP-2, and p-FAK were examined by western blot. P-P38, p-AMPKα, and HIF-1α were also examined by western blot. CoCl2 was used to induce HIF-1α expression in SKOV3 and A2780 cells.ResultsSDHB silencing promoted cell proliferation, invasion, and migration, but inhibited apoptosis of SKOV3 and A2780 cells. In contrast, overexpression of SDHB inhibited cell proliferation, invasion, migration, and promoted apoptosis in SKOV3 cells. It was observed that up-regulation of Bcl-2 and MMP-2, activation of p-P38, p-ERK, and p-FAK, inhibition of cleaved caspase 3 in SDHB-silenced cells. Meanwhile, decreased Bcl-2 and MMP-2, inhibition of p-P38, p-ERK, and p-FAK, activation of cleaved caspase 3 were shown in SDHB-overexpressed SKOV3 cells. HIF-1α, an essential factor in tumor progression, was up-regulated in SDHB-silenced cells with the activation of p-AMPKα and down-regulated in SDHB-overexpressed cancer cells with the decreased p-AMPKα. And SDHB was proved to be decreased due to upregulation of HIF-1α expression in CoCl2-treated cancer cells.ConclusionsOur results firstly revealed that SDHB played a key role in cell proliferation, invasion, migration, and apoptosis of human ovarian carcinoma via AMPK-HIF-1α pathway. SDHB-overexpression might be a new approach to inhibit tumor progression in human ovarian carcinoma.

Highlights

  • Ovarian carcinoma is one of the most common gynecological cancers with high mortality rates

  • The effect of SDHB silencing on ATP and AMPK/P38 MAPK in human ovarian cancer cells The role of SDHB on ATP and AMPK/P38 MAPK was examined using gene silencing strategy

  • The efficiency of SDHB silencing was confirmed by 24 h SDHB small interfering RNA (siRNA) oligonucleotides treatment in SKOV3 or A2780 cells, mRNA level was reduced by 89.80%, 84.89% (P < 0.001), and 83.88% (P < 0.001), respectively (Figure 1A)

Read more

Summary

Introduction

Ovarian carcinoma is one of the most common gynecological cancers with high mortality rates. Succinate dehydrogenase (SDH or Complex II) is one of the important enzymes in the tricarboxylic acid (TCA) cycle. Succinate dehydrogenase subunit B (SDHB) gene, which encodes one of the four subunits of SDH, has been recognized as a tumor suppressor. The role of SDHB in ovarian cancer is still unclear. Current therapeutic strategies against advanced stage ovarian carcinoma include surgical resection along with platinum-based chemotherapy. Reduced SDHB expression is associated with growth and de-differentiation of colorectal cancer cells [10]. The role of SDHB in ovarian carcinoma tumourigenesis, especially its association with cellular proliferation, invasion, and migration are not fully elucidated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call