Abstract

Tensor-optimized antisymmetrized molecular dynamics (TOAMD) is the basis of the successive variational method for nuclear many-body problem. We apply TOAMD to finite nuclei to be described by the central interaction with strong short-range repulsion, and compare the results with the unitary correlation operator method (UCOM). In TOAMD, the pair-type correlation functions and their multiple products are operated to the AMD wave function. We show the results of TOAMD using the Malfliet-Tjon central potential containing the strong short-range repulsion. Adding the double products of the correlation functions in TOAMD, the binding energies are converged quickly to the exact values of the few-body calculations for s-shell nuclei. This indicates the high efficiency of TOAMD for treating the short-range repulsion in nuclei. We also employ the s-wave configurations of nuclei with the central part of UCOM, which reduces the short-range relative amplitudes of nucleon pair in nuclei to avoid the short-range repulsion. In UCOM, we further perform the superposition of the s-wave configurations with various size parameters, which provides a satisfactory solution of energies close to the exact and TOAMD values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call