Abstract

A delay SIR epidemic model with difference in immunity and successive vaccination is proposed to understand their effects on the disease spread. From theorems, it is obtained that the basic reproduction number governs the dynamic behavior of the system. The existence and stability of the possible equilibria are examined in terms of a certain threshold condition about the basic reproduction number. By use of new computational techniques for delay differential equations, we prove that the system is permanent. Our results indicate that the recovery rate and the vaccination rate are two factors for the dynamic behavior of the system. Numerical simulations are carried out to investigate the influence of the key parameters on the spread of the disease, to support the analytical conclusion, and to illustrate possible behavioral scenarios of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.