Abstract

Field and petrographic evidence together with major element geochemistry suggest that mixing and mingling of magmas of contrasting compositions were important petrogenetic processes in the Fazenda Nova/Serra da Japeganga plutonic complex of Northeast Brazil. The complex was emplaced at pressures of 300–500 MPa in amphibolite facies metamorphic rocks of Neoproterozoic age and consists of three main rock types: (1) coarse-grained granite; (2) porphyritic granite and (3) diorite to quartz-monzodiorite. The latter two make up the Fazenda Nova batholith which is located on the northwestern side of the sinistral, NE-trending, Fazenda Nova strike-slip shear zone. NE-plunging stretching lineations in the shear zone suggest that this batholith represents an uplifted, and therefore deeper, portion of the complex. The structure of the complex reflects the stratigraphy in a magma chamber, with the porphyritic granite above the diorite and below the coarse-grained granite. The porphyritic granite has a uniform composition, intermediate in mafic mineral content, quartz, and majorelements between the coarse-grained granite and the diorite. It is free of disequilibrium mineral assemblages, and locally displays gradational contacts with the overlain coarse-grained granite. Most elements display linear correlation with SiO 2 in Harker diagrams. These features are interpreted as resulting from mixing of almost crystal-free felsic and intermediate magmas. Fluid dynamic calculations using the coarse-grained granite and the silica-poorest diorite as end-members in the mixing process show that mechanical mixing was possible, and thermal modelling suggests that the formation of an homogeneous hybrid may have been achieved in less than 50,000 yr. The diorites contain corroded K-feldspar megacrysts, and range in composition from low to relatively high silica contents, partly overlapping with the porphyritic granite. This suggests that a new mixing event occurred during the crystallisation of the porphyritic granite, this time producing a heterogeneous, xenocryst-bearing, dioritic hybrid. Abundant enclaves of diorite in the porphyritic granite, despite their textural diversity, are typically devoid of chilled margins, and were therefore formed relatively early in the crystallisation history of the granite. They are interpreted as liquid droplets separated from the heterogeneous hybrid magma through convection currents and incorporated in the, crystallising granitic magma. Subsequently, during the crystallisation of the porphyritic granite, mafic magma supply to the batholith continued at a declining rate, probably assisted by the development of the Fazenda Nova shear zone. This leads to the production of stromatitic-like structures, with alternating bands of mutually contaminated granite and diorite, then to the intrusion of contorted synplutonic dykes, and, finally, of late-stage dykes, some of which with chilled finer-grained margins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call