Abstract

Variable stiffness actuation is a new design paradigm for high performance and energy efficient robots with inherent safety features. Nonlinear model predictive control (NMPC) was employed to control these robots due to its ability to cope with constrained and nonlinear systems. Even though the results for NMPC are promising, one major weakness is the computational cost of this algorithm. It restricts the use of NMPC to low degree of freedom robots with relatively slow dynamics. This problem can be alleviated by finding an approximate linear representation of the system and using less computation hungry traditional model predictive control (MPC). In this work, we present our successive linearization based MPC (SLMPC) framework for variable stiffness actuated (VSA) robots. The system is linearized and discretized at every sampling instant and a quadratic problem is formulated using this discrete-time linear model. Solution of this quadratic problem provides the control inputs for the control horizon. In order to compare our scheme to NMPC, we conducted experiments with a reaction wheel augmented VSA system. For a 16 s trajectory tracking experiment, the root-mean-square errors were 0.54 and 0.64 degrees for NMPC and SLMPC methods, respectively, whereas the average computation time of the control rule was 2.17 ms for NMPC and 1.25 ms for SLMPC. Halving the computation time without compromising tracking performance shows the potential of our approach as a viable control alternative for VSA robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.