Abstract

Abstract. The time optimal path tracking for industrial robots regards the problem of generating trajectories that follow predefined end-effector (EE) paths in shortest time possible taking into account kinematic and dynamic constraints. The complicated tasks used in industrial applications lead to very long EE paths. At the same time smooth trajectories are mandatory in order to increase the service life. The consideration of jerk and torque rate restrictions, necessary to achieve smooth trajectories, causes enormous numerical effort, and increases computation times. This is in particular due to the high number of optimization variables required for long geometric paths. In this paper we propose an approach where the path is split into segments. For each individual segment a smooth time optimal trajectory is determined and represented by a spline. The overall trajectory is then found by assembling these splines to the solution for the whole path. Further we will show that by using splines, the jerks are automatically bounded so that the jerk constraints do not have to be imposed in the optimization, which reduces the computational complexity. We present experimental results for a six-axis industrial robot. The proposed approach provides smooth time optimal trajectories for arbitrary long geometric paths in an efficient way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.