Abstract

Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. In this study, microbial community composition was investigated using 454 sequencing of soil samples collected from 13 different locations in Odaesan National Park. We assessed whether microbial communities are affected by changes in environmental factors such as water content (WC), nutrient availability (total carbon (TC) and total nitrogen (TN)) and pH caused by forest succession. WC, TC, TN and pH significantly differed between the successional stages of the forest. The WC, TC and TN of the forest soils tended to increase as succession progressed, while pH tended to decrease. In both successional stages, the bacterial genus Pseudolabrys was the most abundant, followed by Afipia and Bradyrhizobium. In addition, the fungal genus Saitozyma showed the highest abundance in the forest soils. Microbial community composition changed according to forest successional stage and soil properties (WC, TC, TN, and pH). Furthermore, network analysis of both bacterial and fungal taxa revealed strong relationships of the microbial community depending on the soil properties affected by forest succession.

Highlights

  • Research on microbial diversity has progressed actively due to the development of high-throughput sequencing (HTS) technology, and the accumulation of many research results has increased the understanding of the microbial community and the sustainability of microbial resources for industrial and commercial applications [1,2,3]

  • This study aims to reveal differences in soil properties caused by forest succession, the microbial diversity and structure of Odaesan National Park, differences in the microbial community associated with successional stage, and the taxonomic networks of microorganisms developed in each forest

  • We investigated the changes in forest soil characteristics and microbial community structure between different successional stages in Odaesan National Park

Read more

Summary

Introduction

Research on microbial diversity has progressed actively due to the development of high-throughput sequencing (HTS) technology, and the accumulation of many research results has increased the understanding of the microbial community and the sustainability of microbial resources for industrial and commercial applications [1,2,3]. Microbial communities of forest soils have been used to investigate the microbial variation caused by vegetation type and altitude and the successional changes caused by forest fires, flooding and cleavage [7,8,9]. These studies have reported that plant compositions and soil properties relate to changes in coil microbial communities [7,9]. Tree identity and soil properties interact closely with the local microbial community [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call