Abstract
IntroductionPrimary succession on glacial forelands is increasingly relevant as rapid glacial retreat is exposing growing land areas to plant colonization. We investigated temporal trends, controls, and outcomes in floral succession on a subarctic glacial foreland. Specifically, we examined changes in community composition (mosses, low shrubs, forbs, trees, and graminoids) over long-term (decadal) and short-term (< 10 years) scales and attempted to identify the underlying processes responsible for the observed successional patterns.MethodsThe study area was the foreland of the Skaftafellsjӧkull, located in Vatnajӧkull National Park near the south coast of Iceland. We established nine transect lines at varying distances from the ice front representing surfaces of age ranging from less than one decade to over 100 years. Each transect consisted of five measurement stations of 1 m2 where we measured vegetative cover (VC), species richness (SR), and species density (SD) and calculated species evenness (SE). Measurements were made initially in 2007 and repeated at the same geographic coordinates in 2014.ResultsVC increased with distance from the ice front from 16% to over 90%. SR and SD increased from the youngest pioneer community through a mid-successional stage corresponding to an age of over 60 but less than 100 years. Increased VC but declining SR, SD, and SE characterized the oldest (over 100 years) bryophyte-dominated surfaces. Species turnover, which involved forbs almost exclusively, increased moderately from early through mid-successional sites and declined on older sites. Comparison of the measurements made in 2014 to those made in 2007 demonstrates increased SR at mid-successional sites while SD remained relatively constant.ConclusionAt a small scale, colonization is controlled by local factors such as microtopography and aspect, particularly in proximity to the glacier. At the landscape level, changes in VC and community structure are controlled by time and nutrient availability. Low nutrient levels and limited site availability favor bryophyte dominance on the oldest surfaces. The greatest community-level changes observed over the 7-year interval were increases in surface cover by mosses and low shrubs, particularly in mid-successional and older sites. These changes suggest that the community on the oldest surfaces has not yet reached equilibrium.
Highlights
Primary succession on glacial forelands is increasingly relevant as rapid glacial retreat is exposing growing land areas to plant colonization
Measurements of vegetative cover (VC) and species counts conducted in 2007 and repeated at the same Global Positioning System (GPS) coordinates in 2014 record a trend of land surface cover increasing from the youngest sites to the oldest on the chronosequence of the Skaftafellsj kull foreland. Both species richness (SR) and species density (SD) increased from the youngest sites through mid-successional stage sites, but SR, SD, and species evenness (SE) decreased on the oldest portions of the chronosequence, reflecting changes in community structure
Graminoids, forbs, and willows all increased through mid-successional stages but decreased in late stages as mosses became more dominant
Summary
Primary succession on glacial forelands is increasingly relevant as rapid glacial retreat is exposing growing land areas to plant colonization. Most of the earlier studies of primary succession, from the late nineteenth and early twentieth centuries, were conducted on the forelands of temperate glaciers in alpine and Scandinavian Europe and North America where the surrounding plant communities are dominated by the boreal forest biome (Coaz 1887; Butters 1914; Cooper 1916, 1931; Lüdi 1921, 1958; Negri 1934, 1936; Fægri 1933; Friedel 1934, 1937, 1938). These glaciers continue to provide useful information for the interpretation of the controls of successional processes on their forelands (Jones and Moral 2005). Jones and Henry (2003) concluded that the differences in successional processes between temperate and high arctic glacial systems are mainly differences in the species involved and the rates of change, which are faster in temperate environments, not the processes themselves
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.