Abstract

This study investigated the potential role of a nitrogen-fixing early-coloniser Alnus Nepalensis D. Don (alder) in driving the changes in soil bacterial communities during secondary succession. We found that bacterial diversity was positively associated with alder growth during course of ecosystem development. Alder development elicited multiple changes in bacterial community composition and ecological networks. For example, the initial dominance of actinobacteria within bacterial community transitioned to the dominance of proteobacteria with stand development. Ecological networks approximating species associations tend to stabilize with alder growth. Janthinobacterium lividum, Candidatus Xiphinematobacter and Rhodoplanes were indicator species of different growth stages of alder. While the growth stages of alder has a major independent contribution to the bacterial diversity, its influence on the community composition was explained conjointly by the changes in soil properties with alder. Alder growth increased trace mineral element concentrations in the soil and explained 63% of variance in the Shannon-diversity. We also found positive association of alder with late-successional Quercus leucotrichophora (Oak). Together, the changes in soil bacterial community shaped by early-coloniser alder and its positive association with late-successional oak suggests a crucial role played by alder in ecosystem recovery of degraded habitats.

Highlights

  • This study investigated the potential role of a nitrogen-fixing early-coloniser Alnus Nepalensis D

  • We investigated the potential facilitative role of an early- colonizer plant species Alnus nepalensis (Himalayan alder), on the changes in soil bacterial communities and on potential association with late-successional plant species during secondary succession

  • (2) Alder growth significantly shapes the soil bacterial community and its interaction with soil bacteria may further play an important role in the recovery of degraded sites (3) Suitable niches created by alder would lead to the establishment and growth of late-successional plant species

Read more

Summary

Introduction

This study investigated the potential role of a nitrogen-fixing early-coloniser Alnus Nepalensis D. (2) Alder growth significantly shapes the soil bacterial community and its interaction with soil bacteria may further play an important role in the recovery of degraded sites (3) Suitable niches created by alder would lead to the establishment and growth of late-successional plant species. To test these hypothesis, our objectives are to (1) investigate the variation in the soil nutrients and mineral elements along a chronosequence of alder stand development (2) study the changes in bacterial diversity, community structure, species interactions within bacterial community affected by alder growth (3) assess the possibility of coexistence of alder with late-successional plant species

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call