Abstract

In the East China Sea (ECS), the succession of causative species responsible for blooms is a recurrent phenomenon during the spring, which changes from diatoms to dinoflagellates. Observations from space and in situ cruises captured this pattern of succession during spring of 2005. In this study, we coupled two biological models, which were developed previously for Skeletonema costatum and Prorocentrum donghaiense, into a circulation model tailored for the ECS. The coupled biophysical model was used to hindcast the blooms and to test the hypothesis proposed in earlier studies that phosphate (PO4 3–) is the first-order decider of the succession. The coupled model successfully reproduced the hydrodynamics (as described in a companion paper by Sun et al.①, the spatiotemporal distribution of the chlorophyll a (Chl a) concentration, and the species succession reasonably well. By analyzing the effects of different factors on the surface Chl a distribution, we confirmed that the offshore boundaries of the blooms were confined by PO4 3–. In addition, we suggest that surface wind fields may modulate the horizontal distribution of blooms. Thus, during the dispersal of blooms, surface winds coupled with PO4 3– may control the succession of blooms in the ECS. The proposed coupled model provides a benchmark to facilitate future improvements by including more size classes for organisms, multiple nutrient schemes, and additional processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call