Abstract

Biochar is often used as an amendment to enhance soil fertility by directly increasing soil pH and nutrient availability. However, biochar may also improve soil fertility indirectly by altering the succession of bacterial communities that, in turn, may alter nutrient supply and availability. To determine how biochar affects soil bacterial richness and diversity, as well as how bacterial communities respond to biochar across space and time, we studied the rhizosphere and bulk soils of potted barley plants for 2 years. Adding biochar significantly increased bacterial community richness (Chao 1 richness index) by the end of the second year in the rhizosphere (P = 0.037), but in bulk soils, we observed an increase in richness in Year 1 that dissipated by Year 2. In contrast to richness, adding biochar only had a significant effect on bacterial community diversity (Shannon diversity index) in Year 1 seedling stage (P < 0.001), but the effect dissipated thereafter. We also found that adding biochar increased the relative abundances of Actinobacteria and Proteobacteria but decreased the relative abundances of Acidobacteria and Chloroflexi, suggesting these communities were sensitive to biochar inputs. The biochar-sensitive genera belonging to Actinobacteria and Proteobacteria made up 45%–58% of sensitive taxa in both rhizosphere and bulk soils. Of the Proteobacteria sensitive to adding biochar, Nitrosospira and Sphingomonas were most abundant in the rhizosphere relative to bulk soils. However, despite the initial increase of biochar sensitive responders in the rhizosphere, their numbers decreased after 2 years and had 179 fewer genera than bulk soils. Our findings suggest the effect of adding biochar was relatively short-lived and that the influence of the plant phenology was a stronger driver of bacterial community change than biochar inputs 2 years after its application. Altogether, the succession of soil bacterial community structure reflected changes in the soil environment induced by the combined effect of biochar, rhizospheric inputs, and plant phenology, suggesting that changes in microbial community composition observed after amending soils with biochar, may also contribute to changes in soil fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.