Abstract

Mesenchymal stem/stromal cells (MSC) are promising candidates for cell-based therapies and for the promotion of tissue repair, hence the increase of clinical trials in a worldwide scale. In particular, adipose tissue-derived stem/stromal cells (AT MSC) present easy accessibility and a rather straightforward process of isolation, providing a clear advantage over other sources. The high demand of cell doses (millions of cells/kg), needed for infusion in clinical settings, requires a scalable and efficient manufacturing of AT MSC under xenogeneic(xeno)-free culture conditions. Here we describe the successful use of human AB serum [10%(v/v)] as a culture supplement, as well as coating substrate for the expansion of these cells in microcarriers using (i) a spinner flask and (ii) a 500-mL mini-bioreactor (ApplikonTM Biotechnology). Cells were characterized by immunophenotype and multilineage differentiation potential. Upon an initial cell adhesion in the spinner flask of 35 ± 2.5%, culture reached a maximal cell density of 2.6 ± 0.1 × 105 at day 7, obtaining a 15 ± 1-fold increase. The implementation of the culture in the 500-mL mini-bioreactor presented an initial cell adhesion of 22 ± 5%, but it reached maximal cell density of 2.7 ± 0.4 × 105 at day 7, obtaining a 27 ± 8-fold increase. Importantly, in both stirred systems, cells retained their immunophenotype and multilineage differentiation potential (osteo-, chondro- and adipogenic lineages). Overall, the scalability of this microcarrier-based system presented herein is of major importance for the purpose of achieving clinically meaningful cell numbers.

Highlights

  • Mesenchymal stem/stromal cells (MSC), characterized as multipotent cells, have been the focus of academia, as well as cell therapy industries, due to their ability to differentiate into a variety of lineages, as well as their paracrine activity which modulates inflammation and other cell processes (Caplan and Bruder, 2001; adipose tissue-derived stem/stromal cells (AT MSC) Expansion in a Microcarrier-Based PlatformKondo et al, 2003; Kinney et al, 2011; Mahla, 2016)

  • Previous work from our group demonstrated the low adhesion efficiency of AT MSC in microcarrier based-stirred systems when combined with commercially available serum-/xeno-free culture medium formulations (Carmelo et al, 2015; dos Santos et al, 2011)

  • MSC were cultured in microcarriers coated with human fibronectin, a-MEM + 10% (v/v) AB HS or a-MEM + 20% (v/v) AB HS

Read more

Summary

Introduction

Mesenchymal stem/stromal cells (MSC), characterized as multipotent cells, have been the focus of academia, as well as cell therapy industries, due to their ability to differentiate into a variety of lineages (osteoblasts, adipocytes and chondroblasts, among others), as well as their paracrine activity which modulates inflammation and other cell processes (Caplan and Bruder, 2001; AT MSC Expansion in a Microcarrier-Based PlatformKondo et al, 2003; Kinney et al, 2011; Mahla, 2016). Mesenchymal stem/stromal cells (MSC), characterized as multipotent cells, have been the focus of academia, as well as cell therapy industries, due to their ability to differentiate into a variety of lineages (osteoblasts, adipocytes and chondroblasts, among others), as well as their paracrine activity which modulates inflammation and other cell processes According to International Society of Cellular Therapy (ISCT), MSC are considered a heterogeneous cell population characterized by spontaneous adherence to plastic, positivity for CD105, CD73, and CD90 and negativity for the expression of CD45, CD34, CD14 or CD11b, CD79 or CD19, and human leukocyte antigen class II, and ability to differentiate in vitro (osteoblasts, adipocytes and chondroblasts) (Noronha et al, 2019). Cells isolated from different sources do not present exactly the same characteristics (Klingemann et al, 2008), diverging in cell number and proliferative capacity, and in expression levels of different cytokines, making the choice of cell source a key feature (Musina et al, 2006)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call