Abstract

Summary A successful rigless subsea stimulation was executed during 2018, with the intervention performed on three target wells offshore of Sabah Malaysia, at a water depth of approximately 1400 m (4,593 ft). Significant changes in reservoir performance prompted an acid-stimulation and scale-squeeze treatment, designed to remedy fines migration and scaling issues within the well and production system. Treatment fluids were delivered subsea by an open-water hydraulic access system, using a hybrid coiled tubing downline (HCTD). Access to the subsea trees was enabled by a novel choke-access technology, allowing for a flexible, cost-efficient, and low-risk intervention. The intervention system was installed on a multiservice vessel, with the downline deployed via the vessel moonpool. A second support vessel was used as required to provide additional fluid capacity without disturbing primary intervention operations. This enhanced the flexibility of the operation, accommodating potential changes in the treatment plan without impact to critical path-stimulation activities. The full intervention was delivered as an integrated service, with all elements supplied by a single provider, via one contract. An established network of in-house equipment, expertise, test laboratories, and operational bases supported the planning and execution of the project. This was complemented by select external providers for vessels, remotely operated vehicle services, and other specialist contractors. The challenges faced during execution included completion of a comprehensive treatment fluid test program, importation and logistics of equipment from around the globe, and managing operational risks, all within a condensed timeline to satisfy a brief intervention window. A collaborative solution was developed that combined the resources of the service provider, inclusion of performance-based elements within the contract, and delivery of an efficient and flexible well-access technology that supported rapid mobilization and alleviated operational risk. Post-stimulation well testing confirmed an average increase in oil productivity of 86%, with a corresponding productivity-index factor gain of 3.4. These results confirm the appropriateness of open-water hydraulic access using coiled tubing (CT) for performing cost-effective stimulations on complex subsea wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.