Abstract

ObjectivesCorneal diseases are among the main causes of blindness, with approximately 4.6 and 23 million patients worldwide suffering from bilateral and unilateral corneal blindness, respectively. The standard treatment for severe corneal diseases is corneal transplantation. However, relevant disadvantages, particularly in high-risk conditions, have focused the attention on the search for alternatives. MethodsWe report interim findings of a phase I-II clinical study evaluating the safety and preliminary efficacy of a tissue-engineered corneal substitute composed of a nanostructured fibrin-agarose biocompatible scaffold combined with allogeneic corneal epithelial and stromal cells (NANOULCOR). 5 subjects (5 eyes) suffering from trophic corneal ulcers refractory to conventional treatments, who combined stromal degradation or fibrosis and limbal stem cell deficiency, were included and treated with this allogeneic anterior corneal substitute. ResultsThe implant completely covered the corneal surface, and ocular surface inflammation decreased following surgery. Only four adverse reactions were registered, and none of them were severe. No detachment, ulcer relapse nor surgical re-interventions were registered after 2 years of follow-up. No signs of graft rejection, local infection or corneal neovascularization were observed either. Efficacy was measured as a significant postoperative improvement in terms of the eye complication grading scales. Anterior segment optical coherence tomography images revealed a more homogeneous and stable ocular surface, with complete scaffold degradation occurring within 3–12 weeks after surgery. ConclusionsOur findings suggest that the surgical application of this allogeneic anterior human corneal substitute is feasible and safe, showing partial efficacy in the restoration of the corneal surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.