Abstract
Therapeutic cloning has tremendous potential for cell therapy and tissue repair in some diseases. However, the efficiency of development of cloned human embryos by somatic cell nuclear transfer is still low. In the present study, the activation of cloned human embryos was investigated while using in vitro-matured oocytes. Pseudo-pronuclear formation and the subsequent development was compared with different activation parameters, including different durations of ionomycin and 6-dimethylaminopurine treatment. The results showed that somatic cells were successfully reprogrammed by modification of activation treatments while using in vitro-matured oocytes. The activation efficiency of cloned human embryos was significantly increased at durations of ionomycin at both 5 and 7 min, despite different durations of 6-DMAP treatment. The results of blastocyst development showed that 20% of activated embryos developed to the blastocyst stage when the embryos were activated with 5 µm ionomycin for 5 min and 2 mm 6-DMAP for 5 h, which was significantly higher than those activated with other parameters. Moreover, we found that an increasing duration of 6-DMAP induced the formation of a single, large, pseudo-pronucleus in cloned human embryos and impaired subsequent development competence. In conclusion, successful reprogramming of human somatic cells was achieved using in vitro-matured oocytes by somatic cell nuclear transfer and improved with a modified activation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.