Abstract
Crystal structures of p-xylene-crystallized deoxycholic acid (3α,12α-dihydroxy-5β-cholan-24-oic acid) and its three epimers (3β,12α-; 3α,12β-; and 3β,12β-) have been solved. Deoxycholic acid forms a crystalline (P21) complex with the solvent with a 2:1 stoichiometry whereas crystals of the three epimers do not form inclusion compounds. Crystals of the 3β,12β-epimer are hexagonal, whereas the 3α,12β-and 3β,12α-epimers crystallize in the P212121 orthorhombic space group. The three hydrogen bond sites (two hydroxy groups, i. e. O3H, and O12H, and the carboxylic acid group of the side chain, O24bO24aH) simultaneously act as hydrogen bond donors and acceptors.The hydrogen bond network in the crystals was analyzed and the following sequences have been observed: two chains (abcabc… or acbacb…) and two rings (▪), which constitute a complete set of all the possible sequences which can be drawn for an intermolecular hydrogen bond network formed by three hydrogen bond donor/acceptor sites forming crossing hydrogen bonds. The orientation of O3H (α or β) determines the sequence of the acceptor and the donor groups involved in the pattern: O24a→O12→O3→O24b when it is α and O24a→O3→O12→O24b when it is β.These observations were used to predict the hydrogen bond network of p-xylene-crystallized 3-oxo,12α-hydroxy-5β-cholan-24-oic acid. This compound has two hydrogen bond donor and three potential hydrogen bond acceptor sites. According to the previous sequence set, this compound should crystallize in the monoclinic P21 system, should form a complex with the solvent, O24b should not participate in the hydrogen bond network, and the chain sequence O24a→O12→O3 would be followed. All predictions were confirmed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.