Abstract
Oxidative stress is a major determinant for radiation-induced tissue injuries. We present a novel method that harnesses the power of migration of mesenchymal stem cells (MSCs) to radiation injured tissues and adenovirusmediated extracellular superoxide dismutase (ECSOD) gene therapy for oxidative stress. This report demonstrates for the first time that intravenous administration of MSCs genetically modified to secrete ECSOD at 24 hours after radiation exposure can improve survival from 10% to 52%, extend lifespan for 207 days, retard cataract formation for 39 days, and prevent carcinogenesis in mice. For proof-of-concept, we further demonstrate for the first time that human MSCs can be genetically modified with adenoviral vector to secrete high levels of biologically active ECSOD. Our findings suggest that mesenchymal stem cell-based antioxidant gene therapy has the potential for mitigation of radiation injuries in humans as a consequence of radiological and nuclear emergencies, space radiation exposure, and cancer radiotherapy toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.