Abstract

In vivo real-time monitoring of neuronal activities in freely moving animals is one of key approaches to link neuronal activity to behavior. For this purpose, an in vivo imaging technique that detects calcium transients in neurons using genetically encoded calcium indicators (GECIs), a miniaturized fluorescence microscope, and a gradient refractive index (GRIN) lens has been developed and successfully applied to many brain structures1 , 2 , 3 , 4 , 5 , 6. This imaging technique is particularly powerful because it enables chronic simultaneous imaging of genetically defined cell populations for a long-term period up to several weeks. Although useful, this imaging technique has not been easily applied to brain structures that locate deep within the brain such as amygdala, an essential brain structure for emotional processing and associative fear memory7. There are several factors that make it difficult to apply the imaging technique to the amygdala. For instance, motion artifacts usually occur more frequently during the imaging conducted in the deeper brain regions because a head-mount microscope implanted deep in the brain is relatively unstable. Another problem is that the lateral ventricle is positioned close to the implanted GRIN lens and its movement during respiration may cause highly irregular motion artifacts that cannot be easily corrected, which makes it difficult to form a stable imaging view. Furthermore, because cells in the amygdala are usually quiet at a resting or anesthetized state, it is hard to find and focus the target cells expressing GECI in the amygdala during baseplating procedure for later imaging. This protocol provides a helpful guideline for how to efficiently target cells expressing GECI in the amygdala with head-mount miniaturized microscope for successful in vivo calcium imaging in such a deeper brain region. It is noted that this protocol is based on a particular system (e.g., Inscopix) but not restricted to it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.