Abstract

Improved genome editing via oviductal nucleic acids delivery (i-GONAD) is a new technology enabling in situ genome editing of mammalian zygotes exiting the oviductal lumen, which is now available in mice, rats, and hamsters. In this method, CRISPR/Cas9 genome-editing reagents are delivered directly to the oviducts of pregnant animals (corresponding to late zygote stage). After intraoviductal instillation, electric shock to the entire oviduct was provided with a specialized electroporation (EP) device to drive the genome editing reagents into the zygotes present in the oviductal lumen. i-GONAD toward early zygotes has been recognized as difficult, because they are tightly surrounded by a cumulus cell layer, which often hampers effective transfer of nucleic acids to zygotes. However, in vivo EP three min after intraoviductal instillation of the genome-editing reagents enabled genome editing of early zygotes with an efficiency of 70%, which was in contrast with the rate of 18% when in vivo EP was performed immediately after intraoviductal instillation at Day 0.5 of pregnancy (corresponding to 13:00–13:30 p.m. on the day when vaginal plug was recognized after natural mating). We also found that addition of hyaluronidase, an enzyme capable of removing cumulus cells from a zygote, slightly enhanced the efficiency of genome editing in early zygotes. These findings suggest that cumulus cells surrounding a zygote can be a barrier for efficient generation of genome-edited mouse embryos and indicate that a three-minute interval before in vivo EP is effective for achieving i-GONAD-mediated genome editing at the early zygote stage. These results are particularly beneficial for researchers who want to perform genome editing experiments targeting early zygotes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call