Abstract

ABSTRACT Our study established an effective next-generation sequencing (NGS) protocol for four-factor preimplantation genetic testing (PGT) using α- and β-thalassemia, human leukocyte antigen (HLA) typing, and aneuploidy screening. Three couples, in whom both partners were α- and β-double thalassemia carriers, underwent PGT between 2016 and 2018. These individuals sought an opportunity for hematopoietic stem cell transplantation to save their children from β-thalassemia major. A total of 35 biopsied trophectoderm samples underwent multiple displacement amplification (MDA). PGT for α- and β-thalassemia and HLA typing were performed on MDA products using NGS-based single-nucleotide polymorphism (SNP) haplotyping. Although two samples failed MDA, 94.3% (33/35) of samples were successfully amplified, achieving conclusive PGT results. Furthermore, 51.5% (17/33) of the embryos were diagnosed as unaffected non-carriers or carriers. Of the 17 unaffected embryos, nine (52.9%) were tested further and identified as euploid via NGS-based aneuploid screening, in which five had HLA types matching affected children. One family did not achieve any unaffected euploid embryos. The two other families transferred HLA-matched and unaffected euploid embryos, resulting in two healthy ‘savior babies.’ NGS-PGT results were confirmed in prenatal diagnosis. Therefore, NGS-SNP was effective in performing PGT for multipurpose detection within a single PGT cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call