Abstract

Transplantation of mesenchymal stem cells (MSC) can effectively repair endometrial deficiencies, including infertile patients with a problem of inadequate endometrium thickness. Although, MSC derived from different organ sources have a similarity of MSC specific characteristics, endometrial stem cells (EMSC) are temporally regulated throughout the menstrual cycle in a micro-environmental niche found only in endometrial tissue. Given the micro-environment niche, developing treatments for endometrial disorders with EMSC should be a top priority. To provide EMSC that afford safety for therapeutic usage, we have established a completely xeno-free EMSC line derivation protocol using human allogenic umbilical cord serum instead of animal derived reagents, and proved that it is feasible to generate xeno-free EMSC lines from infertile patient donors using these conditions. Our results demonstrate the successful derivation of xeno-free EMSC lines from 10 out of 10 infertile patients. The resultant xeno-free EMSC lines showed typical MSC morphology, phenotypic markers, differentiation capacity, telomere length and normal karyotypes. They showed superior proliferation capability, but lower expression of proto-oncogenes, to the lines generated under standard (animal derived reagents) culture. Biosafety of xeno-free EMSC lines also displayed in retention of immunosuppressive ability, epigenetic stability by imprinted genes expression, proto-oncogenes expression and no mutation of specific codon on p53 tumor suppressor gene. Taken together, these data indicate that our cells may be safe for clinical use. In conclusion, we have succeeded in establishing completely xeno-free EMSC lines and demonstrate for the first time that autogenic and xeno-free EMSC lines can be generated from infertile women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.